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1. Introduction
Multistage centrifugal pump units are widely used in diverse ar-

eas, such as condensate water supply for nuclear power plants, drain-
age of submarine, agricultural irrigation, etc [7]. The condition moni-
toring and fault diagnosis technologies are significantly important 
to improve the reliability and stability during the operation of pump 
units [4, 9, 12, 13, 26]. Nowadays, vibration signal-based analysis is 
one of the most efficient methods for condition monitoring and fault 
diagnosis [6, 17, 19]. However, due to the interference of background 
noise, the obtained signals often cannot accurately reflect the running 
state of the pump units. The early fault characteristics are easily sub-
merged by noise, lead to the inexact assessment of health conditions. 
Consequently, fast and effective noise reduction method is of great 
significance to accurately extract fault features in the condition moni-
toring and fault diagnosis of pump units [1, 8].

Because of the complex structure of the multistage centrifugal 
pump, multiple internal excitation sources, the vibration signal is 
characterized by strong non-linearity and non-stationarity [1]. Tradi-
tional Fourier transform-based denoising methods and FIR filtering 
methods can't process the non-stationary signal well. Most of current 
researches about vibration signal denoising focus on some popular 
techniques, mainly including wavelet analysis, empirical mode de-
composition (EMD), singular value decomposition (SVD), etc. Wave-
let transform methods have the capability of analyzing non-stationary 
signals [5, 29]. By scaling and shifting the wavelet basis functions, the 
local features of signal in time-frequency domain can be appropriately 
extracted. The wavelet thresholding-based denoising methods have 
been widely used in noised reduction and diagnosis of mechanical sig-
nals. The popular threshold selection methods mainly include uniform 
threshold, unbiased estimation threshold, minimax threshold, heuris-
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tic threshold, etc. Yang et al. proposed an improved wavelet adjacent 
coefficient-based denoising method by setting the adjacent wavelet 
coefficient as the whole threshold value, so that filtering the noise 
and efficiently retaining the impact characteristics in the raw signal 
[24]. Wu et al. used the threshold estimation method for overlapping 
blocks to improve the effect of noise reduction [23]. Because of the 
complexity of mechanical signals, wavelet analysis methods need to 
set wavelet basis according to signal characteristics in advance. At 
the same time, the number of decomposition layers has a great influ-
ence on the effect of noise reduction. EMD based denoising meth-
ods are another branch with no need to set predefined basis function. 
By decomposing the original signal into a series of Intrinsic Mode 
functions (IMFs) from high frequency to low frequency, the IMFs 
that contain the main information can be selected and reconstructed, 
the high frequency noise in other IMFs can be filtering. Zhang et al. 
utilized the EMD to decompose the current signal and extract blade 
imbalance fault feature, which is concealed by the supply frequency 
and the environment noise [14]. However, end effects, modal aliasing 
and the selection criteria of IMFs are still the challenges in this branch 
[1, 10]. The scholars have proposed a series of improved algorithms 
to overcome these drawbacks, such as ensemble empirical mode de-
composition (EEMD) [10], local mean decomposition (LMD) [29] 
and variational mode decomposition (VMD) [11], while increased 
the complexity of denoising procedure. In addition, by discarding 
the high frequency components that represent noise, useful high fre-
quency information is also discarded. The signal processing for each 
IMFs in such approached is therefore another difficulty. SVD based 
denoising mainly reconstruct the original signal into a Hankel matrix, 
and then the matrix is transformed into a factorization form, where 
diagonal entries are known as the singular values. Each singular value 
can be reconstructed into a signal components. Generally, the large 
values of front singular value represent the useful information of raw 
signal, while the small values of the last ones are related to random 
noise [20]. The works about the methods to select effective singular 
values have been often reported [11, 18, 20].

Overall, these aforementioned methods are all based on the idea 
of decomposition, which may suffer from two difficulties in practi-
cal engineering. (1) The selection of predefined basis function and 
parameter design largely rely on priori knowledge and expert experi-
ence. (2) After decomposition, much efforts are need to select and 
process the useful components while discard the components con-
taining noise. It is highly desirable to investigate the vibration sig-
nal denoising methods with easy implementation and simple param-
eter determination. Non-local mean (NLM) algorithm is a denoising 
method proposed by Buades et al. in the field of image processing by 
taking advantage of similar structure characteristics of image blocks 
[2]. Different from the idea of signal decomposition, the non-local 
mean algorithm searches for similar structures in the region, and then 
removes noise by weighted average. Due to its excellent noise re-
duction ability and relatively simple parameter selection, this algo-
rithm has been successfully applied in image processing, denoising 
of biomedical signals and other fields [15, 21, 25, 28]. For rotating 
machinery, vibration signals are usually periodic and cyclo-stationary, 
and the signal mode reflecting the characteristics of equipment state 
appears repeatedly with abundant redundant information. These char-
acteristics provide the foundation for the application of this algorithm 
in denoising of 1-dimensional mechanical vibration signal [27]. This 
work applied the NLM methods to the denoising of vibration signal 
of multistage centrifugal pump. The validity and superiority of the 
method are verified by simulation experiment and analysis of vibra-
tion data in real pump unit, providing a fast and effective denoising 
method for practical engineering. 

2. The principle of NLM filtering

NLM filtering focuses on denoising in each region. The core idea 
is to search similar signal blocks in a neighborhood class and conduct 
weighted average so as to remove noise and large amount of redun-
dant information in the raw signal. For the vibration signals of rotat-
ing machinery, some signal characteristic modes, such as pulse char-
acteristics and periodically appeared rotating frequency components, 
generally exist. While the noise superimposed on the signal block is 
random distribution, which can be effectively filtered by weighted av-
erage. The core problem of non-local mean denoising is to recover 
the original signal from a signal containing additive noise. The signal 
model with additive noise is as follows:

    v u n= +  (1)

where v  is the measured signal, u  is the theoretically noiseless sig-
nal and n  is the additive white gaussian noise. Given a measured 
sample s , ( )û s  represents the estimation of the original noise-free 
signal and it can be calculated by searching a series of similar signal 
blocks in a neighborhood and making weighted averages. The for-
mula can be described as follows:
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where ( ),w s t  represents the weight of similarity between the t-
center signal block and the s-center target signal block, ( )N s  means 
the searching neighborhood centered on the target signal block, 
( ) ( ),

t
Z s w s t= ∑  is a normalization constant to represent the sum 

of the weights of all similar blocks. The weight ( ),w s t  is calculated 
as:
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where λ the parameter of filter, LΔ represents the data points for signal 
blocks. The similarity is estimated by the Euclidean distance between 
the t-center signal block and the s-center target signal block. In Eq (3), 
the weight of each signal block itself ( ), 1w s s = . In the field of image 
processing, to obtain better smoothing effect, the formula for calculat-
ing the similarity weight of the central signal block is as follows:

 ( ) ( ) ( ), ,
,  

max
w s s w s t

t N s t s
=

∈ ≠
 (4)

Considering the non-stationary characteristics of mechanical sig-
nals, there is still a large difference in amplitude between the signal 
blocks with similar structures, which may lead to a low similarity 
weight and further smooth the original signal. Excessive smooth can 
result in the loss of signal detail. Therefore, the similar weight correc-
tion of the central signal block is not adopted in this work.

It can be seen that the weight depends on the similarity between 
the signal blocks, rather than only considering the center distance 
between the signal blocks, so that the weighted average denoising 
can retain the signal details to the maximum extent. When the search 
neighborhood covers the whole signal, the algorithm realizes the true 
non-local mean. However, computational burden increases linearly 
with the signal length. For one dimensional signal with N  data points 
and search radius with M  data points, the computational complexity 
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is ( ).O L NM∆  In this work, the fast non-local mean method proposed 
by Darbon et al. is adopted for subsequent research [3]. This method 
can accelerate the calculation process of similar weights by reducing 
nested cycles, and the computational complexity after optimization is 
( )2 .O NM  Fig. 1 gives the illustration of NLM parameters. The red 

patch with center s means the target signal patch, while the yellow 
patch with center t represents the searched patch in a neighbourhood. 
The searching region for the neighbourhood contains 2M points with 
the center of s.

Essentially, different from signal decomposition in most of meth-
ods, such as wavelet and EMD, NLM is based on the idea of statisti-
cal neighbourhood filter. In contrast to the methods, such as wavelets 
and Fourier transform, which require predefined basis function, NLM 
reduces the noise in the raw signal by approximating the signal patch 
with the self-similar patches in the original signal, instead of decom-
position with basis function. Moreover, NLM avoids to identify which 
decomposed components represent dominantly noise and which com-
ponents contain primarily main information in the methods, such as 
EMD and SVD. Consequently, the basic principle of NLM filtering 
shows the application prospect for vibration signal denoising.

Fig. 1. Illustration of NLM parameters.

3. Parameters criteria

The length of signal block (2P+1) is an important parameter in 
NLM denoising. When the value of P is too small, the signal block 
cannot reflect the typical characteristic mode of the signal. At the 
same time, it is seriously disturbed by noise. When the P is set to a 
large value, the signal block contains too much information, which 
is easy to cause smoothing effect in the weighted evaluation process. 
For the one-dimensional mechanical vibration signal, an appropriate 
P is usually half of the typical characteristic length, and the specific 
typical signal block length needs to be selected according to the char-
acteristics of the signal.

For the search radius M of the neighborhood, theoretically, a larg-
er M is benefit to find more similar signal blocks, and more redundant 
information will be enriched to achieve better noise reduction effect, 
however, it will bring significant increase in the amount of calcula-
tion. 

The filter bandwidth λ primary control the smoothing effect in 
denoising process. A too small λ is likely to cause noise disturbance 
and affect the size of the weight between the signal blocks, causing an 
inadequate average. A too large λ will cause a large similarity weight 
between low-similarity signal blocks, resulting in excessive smooth-
ness and loss of local detail characteristics of the signal. In the field of 
image processing, according to the SURE criteria of Ville and Kocher 
[22], λ σ= 0 5. , where σ is the standard deviation of noise. Referring 
to the application of NLM in one-dimensional signal denoising [21], 
λ is set to 0.6σ in this work. For the real signal, the noise variance can 
be estimated based on wavelet coefficient.

4. Numerical analysis

Due to mechanical and water flow excitation, vibration signal of 
multistage centrifugal pump is mainly composed of rotating frequency 
and its harmonic frequency components. For bearing faults, the signal 
has obvious impact characteristics. To verify the effectiveness of the 

method, two sets of simulation signals are designed and analyzed. The 
noise reduction effect is quantitatively evaluated by introducing three 
indexes of SNR improvement, mean square error (MSE) and distor-
tion rate (DR). The calculation formulas are as follows:
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where N means the length of signal and the other symbols are same 
as stated above. The first set of simulation signals is designed as 
follows:

 ( )
6

1
   2i i

i
x t A sin f tπ

=
= ∑  (8)

where 1 6A A−  are set to 20, 4.5, 2.55, 1.5, 0.4, and 0.3 respective-
ly, 1 6f f−  are set to 20, 2 20× , 3 20× , 4 20× , 0.2 20× , 0.3 20×  
respectively, the sampling frequency is 1000Hz and signal length is 
2048 points. The white gaussian noise is added and the SNR is 8dB. 
The time-domain waveforms of the simulated signal and the noisy 
signal are shown in Fig. 2:

Fig. 2. Time waveform of simulation signal 1

NLM and wavelet soft threshold method (Wden) are used for 
noise reduction and comparison. The detailed parameters of the two 
methods are set as follows. NLM: p=30, M=1000, λ=0.6σ. Wden: 
db10 is selected as wavelet base function, decomposition layer is 5, 
heuristic threshold criterion is used. The denoising signals are shown 
in Fig. 3. It can be seen that the NLM algorithm performs better in 
filtering noise and reflecting the characteristics of the original wave-
form. The wavelet threshold denoising can obtain smoother original 
waveform. However, the wavelet basis structure needs to meet the 
orthogonal premise, while the wavelet basis function insufficiently 
matches the original waveform features, resulting in the phenomenon 
of local distortion in denoising signal. Furthermore, the above three 
indicators are used to conduct quantitative evaluation on the noise 
reduction performance under different SNR conditions, as listed in 
Table 1.

The second group of simulation signals are periodic shock sig-
nals, and the calculation formula is as follows:
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where a 150= , carrier frequency 1000cf = , fault characteristic fre-
quency 20mf = , sampling frequency is 2500Hz and signal length is 
2048 points. The SNR of the noise signal is 4dB, and the time-do-
main waveform is shown in Fig. 4. Using the same parameter settings 
above, the results of the two denoising methods are shown in Fig. 5. 
Under different SNR conditions, the quantitative evaluation results of 
noise reduction are given in Table 2. Similar conclusions can be drawn 
that NLM denoising not only enhances the shock characteristics of the 
signal, but also better guarantees the waveform characteristics of the 
original impulses. However, the classical wavelet threshold method 
has obvious distortion. NLM noise reduction signal has a higher re-
duction degree, compared to the original signal.

Combined with the second set of simulation 
signal, two key parameters P and M in the NLM 
denoising process reduction are discussed to pro-
vide a clearer guiding principle for the parameter 
selection in the practical tasks. The curves of SNR 
enhancement and MSE along with parameters are 
shown in Fig. 6. Since the result of DR is similar to 
that of the MSE, it is not shown here. It can be seen 
that a best noise reduction effect is achieved, when 
parameter P is set between 30 and 50 points. In 
the simulation signals, each impulse feature lasts 
for about 100 points. When P is between 30-50, 
the signal block with length (2P+1) just reflects 
the shock feature of the original signal, and thus 
achieves a good noise reduction effect. At the same 

time, with the increase of M length in the search neighborhood, the 
denoising effect is also improved correspondingly. When M contains 
enough points (M > 2048), the lifting speed of each index gradually 
slows down.

Fig. 4. Time waveform of simulation signal 2

Fig. 5. The comparison of denoising results of simulation signal 2 for two 
methods

Table 2. The denoising results of two methods with different SNRs for simula-
tion signal 2

SNR/dB

NLM Wden

impSNR
MSE/

310−
DR

impSNR
MSE/

310−
DR

8 10.3 0.51 13.56 2.46 3.1 65.75

7 9.97 0.68 17.25 2.91 3.5 80.62

6 9.73 0.91 23.13 3.40 3.9 99.32

5 8.50 1.5 30.73 3.35 5.0 105.6

4 8.19 2.1 60.96 3.68 5.9 151.7

3 5.93 4.4 103.8 4.02 6.8 157.7

Table 1. The denoising results of two methods with different SNRs for 
simulation signal 1

SNR/dB
NLM Wden

impSNR MSE DR/ 310 impSNR MSE DR/ 310
8 13.33 1.58 0.47 7.34 6.26 1.43

7 13.73 1.75 0.59 7.48 7.39 1.71

6 11.76 3.58 0.60 8.33 7.88 1.79

5 12.62 3.70 0.75 7.42 12.25 2.26

4 12.43 4.85 0.98 8.36 12.40 2.46

3 10.15 10.22 1.90 7.21 20.09 3.24

Fig. 3. The comparison of denoising results of two methods for simulation 
signal 1

Fig. 6. The improvement of evaluation indicators versus P and M( 0.6λ σ=  ): (a) SNR improvement, 
(b) MSE
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5. Case studies on vibration signal of multistage cen-
trifugal pumps

In order to verify the effectiveness of NLM method in actual in-
dustrial tasks, this paper selects two cases of practical vibration fault 
diagnosis of multistage centrifugal pump sets for analysis. The first 
analysis case is that the misalignment fault of the motor and the cen-
trifugal pump coupling leads to the excessively high vibration index. 
The rotating speed of the centrifugal pump is 1490r/min. Vibration 
signals are collected through the acceleration sensor located at the 
pump driving end with a sampling frequency of 1280Hz. Time-do-
main waveforms are shown in Fig. 7, which are further used for de-
noising (containing 1792 data points). It can be intuitively seen that 
the vibration signal contains very obvious rotating frequency com-
ponent. At the same time, some high-frequency components are su-
perimposed on the rotating frequency signal, which interferes with 
the further identification of faults. NLM is used for denoising. The 
parameters settings are p=10, M=1024, λ=0.6σ, the noise variance can 
be estimated from the high-frequency coefficient of the first layer in 
wavelet decomposition. wavelet soft threshold denoising method is 
also used for comparative analysis. Wavelet basis function is db10, 
which highly resembles the vibration signal no matter for the main 
frequency component or the impulses with high frequencies. In ad-
dition, db10 wavelet has orthogonal property which enables perfect 
reconstruction of signal and have been reported to produce best result 
according to related works [16]. The number of decomposition layer 
is 5, heuristic threshold criterion is used.

Fig. 7. The vibration signal of multistage centrifugal pump with misalignment

The denoising signals are shown in Fig. 8. From the NLM denois-
ing results, it can be seen that the high frequency noise is effectively 
filtered. There are obvious harmonic frequency components in the 
signal. But strong noise interference still exists in the denoising signal 
for the wavelet threshold method. For practical engineering tasks, the 
selection of wavelet threshold has a great influence on the result of 
noise reduction.

Fig. 8. The denoising results of for two methods in case study 1: (a) NLM, 
(b) Wden

The fault characteristics can be preliminarily detected from the 
harmonic frequency. To remove the main frequency component, 
namely the rotating frequency, and present a clear fault symptom, the 
ensemble empirical mode decomposition (EEMD) is further utilized 
to decompose denoising signal and extract the components with fault 
information for spectrum analysis. The results are shown in Fig. 9 The 
1X, 2X and 3X frequency components can be accurately extracted 
from the spectrum of NLM method. The preliminary judgment is that 
the coupling alignment occurs. In the wavelet threshold noise reduc-
tion method, due to the interference of residual noise, the harmonic 
frequency components in the spectrum are not obvious.

Fig. 9. The frequency spectra of fault component: (a) NLM and (b) Wden

The second case is a bearing fault vibration signal analysis in cen-
trifugal pump. The faults occurs in the outer ring of non-driving end 
conical roller bearing, resulting in high vibration index. The rotating 
speed of the centrifugal pump is 1490r/min, and the fault characteris-
tic frequency of the bearing outer ring is 236.67of Hz=  Hz. The sam-
pling frequency is 1280 Hz. The vibration waveform collected by the 
acceleration sensor at the non-driving end is shown in Fig. 10.

Fig. 10. The vibration signal of multistage centrifugal pump with bearing 
fault

Similar to case 1, the rotating frequency component in the signal 
can be clearly found, and at the same time, there are a large num-
ber of high-frequency components in the signal. NLM and wavelet 
threshold are used for denoising respectively. The parameter settings 
are the same as above. The results of NLM are shown in Fig. 11. A 
large number of high-frequency components are effectively filtered 
out, but some high-frequency impulse components still exist in the 
waveform after denoising. The local amplification of the denoising 
signal shows that these high-frequency components show obvious 
characteristics of periodic shock. The preliminary judgment is related 
to bearing failure. After the envelope analysis of the denoising signal, 
as shown in the Fig. 11(c), the double fault characteristic frequency 

473.3of Hz=  Hz can be exactly detected. Owing to the weighted average 
between similar signal blocks, it can be seen that NLM method can 
effectively filter out noise and enhance the periodicity similar signal 
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components, providing convenience for rapid and accurate fault diag-
nosis. For comparison, the denoising waveform of wavelet threshold 
methods is shown in Fig. 12. Due to the problem of threshold se-
lection, all the high frequency fault information is filtered out, only 
leaving smooth rotating frequency component, which cannot provide 
effective diagnostic information.

The effectiveness of NLM can be verified by the two case stud-
ies in real multistage centrifugal pump unit. Although this work only 
focuses on multistage centrifugal pump unit, the feature modes and 
characteristics are similar to other rotating machineries, such as wind 
turbine and stream turbine. For rotor-related faults, the harmonic fre-
quencies components are is superimposed upon the rotating frequency 
component. For bearing and gear faults, the impulses and resonance 
components in high frequency are generally induced. Overall, the 
fault features appear periodically, and a large amount of similar in-
formation exist in the vibration signal of rotating machineries. Con-
sequently, by comparing the local neighborhoods, finding the similar 
features on the basis of self-similarities, and removing the redundancy 
of similar patches, NLM is significantly suitable for analyzing the 
vibration signals of rotating machinery. Moreover, different from the 
decomposition-based denoising methods, there are no need of select-
ing basis function and setting complex decomposed parameters in 
NLM, providing an accessible denoising approach for practical ap-
plication.

6. Conclusions

Noise reduction of mechanical vibration signal is the key and dif-
ficult point to realize accurate fault diagnosis. Considering the non-
stationary characteristics of vibration signal and the difficulty of se-
lecting the threshold value in wavelet denoising methods, this paper 
investigates vibration signal denoising of multistage centrifugal pump 
unit using NLM. Different from the traditional denoising idea of basis 
function decomposition, NLM uses the weighted average of similar 
signal blocks in a neighborhood, which has strong non-stationary 
signal processing ability and excellent adaptability. Moreover, this 
method has a wide application prospect because of its simple princi-
ple and easy parameter selection. The validity and superiority of the 
method are verified by the simulation signal analysis. The key pa-
rameter selections are also discussed. The analysis results of practical 
diagnosis cases of multistage centrifugal pump show that NLM can 
effectively filter the noise components with poor correlation between 
signal blocks and enhance the periodic fault characteristics.
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Fig. 11. The analysis of denoising results of NLM in case study 2: (a) de-
noising signal, (b) local amplification of the denoising signal and (c) 
envelope spectrum of denoising signal

Fig. 12. The results of Wden in case study 2
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